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Abstract

We study one of the central reforms in China’s economic miracle, the Household Responsi-

bility System (HRS), which decollectivized agriculture starting in 1978. The HRS is commonly

seen as having significantly boosted agricultural productivity—but this conclusion rests on

unreliable official data. We use historical satellite imagery to generate new measurements of

grain yield, independent of official Chinese statistics. Using two separate empirical designs

that exploit the staggered rollout of the HRS across provinces and counties, we find no causal

evidence that areas that adopted the HRS sooner experienced faster grain yield growth. These

results challenge our conventional understanding of decollectivization, land reform, and the

origins of the Chinese miracle.
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1 Introduction

China’s rise has lifted hundreds of millions out of poverty and reshaped the global economy,

making it a central model for developing countries worldwide. According to the World Bank,

China has been responsible for 75% of global extreme poverty reduction and 23% of global GDP

growth since 1980 (World Bank 2022). Understanding the causes of Chinese economic growth is

thus a central question for growth and development economics.

The conventional wisdom is that the Chinese economic miracle was caused by the market-

oriented reforms of Deng Xiaoping. The first and perhaps the most important of these was the

post-1978 Household Responsibility System (HRS), which dismantled Mao’s collective farms and

gave households market incentives to produce—in a literal sense, ending communism in agricul-

ture. From 1978 to 1984, official grain yields surged by 43%, growing from 2.8 tons per hectare to

3.6 tons per hectare. The academic consensus is that the HRS was responsible, with a widely cited

estimate by Lin (1992) stating that decollectivization contributed to 49% of all agricultural output

growth from 1978-84. For a developing country where agriculture was still central—around 30%

of value-added and 60% of employment in 1980—such a boost to productivity would have made

the HRS a major factor in China’s growth takeoff. Moreover, the perceived success of the HRS led

to the expansion of other reforms that liberalized the Chinese economy, making it a cornerstone

of political legitimacy for the post-Mao Communist Party.

But how much can we trust the conventional wisdom about the HRS? Prior studies have often

relied on official Chinese data, largely without the benefit of modern causal inference techniques.

Compared to the scale of the Chinese miracle, modern research on Deng Xiaoping’s reforms

is surprisingly rare, because Chinese economic statistics are either unavailable or unreliable.

In order to make precise causal claims about the HRS, we need disaggregated data, but sub-

provincial statistics on agricultural productivity from the reform period are rare. Moreover, there

are underlying concerns about the reliability of Chinese economic statistics—foreign researchers,

Chinese economists, and even top Chinese leaders have all observed that they can reflect political

priorities more than the ground truth.1

1See Rawski (1976), Holz (2003), and Nakamura et al. (2016) for discussions of Chinese macroeconomic statistics.
In leaked diplomatic cables, former Premier Li Keqiang once described China’s GDP statistics as “man-made” and
therefore unreliable (Rabinovitch 2010).
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This paper tackles these challenges and expands our understanding of the causes of the Chi-

nese miracle by using data from a novel source—historical satellite imagery. This paper’s first

major contribution is the creation of new satellite-based measures of historical agricultural pro-

duction in China. Using images from the Advanced Very High Resolution Radiometer (AVHRR),

we can directly measure the amount of vegetation on the ground using the Normalized Differ-

ence Vegetation Index (NDVI), a common satellite-based measure which we show contains a

strong signal of the reported yield (output over area). Then, to turn NDVI into interpretable

yields, we apply machine learning methods from remote sensing and environmental science and

train a random forest to predict yield from a set of countries with similar crops and conditions

to China. We then take the trained model to Chinese remote sensing data to form a new, highly

disaggregated dataset of grain yields, independent of the official data. We then verify that these

satellite-based measures can accurately predict yield through a range of validation exercises.

This paper’s second major contribution is to combine these satellite-based measures with

treatment data on the staggered rollout of the HRS across China to give us the first credible

causal estimates of the HRS’s effects on grain yields. Since the HRS was first permitted only in

remote and famine-stricken areas, a causal design needs to take into account selection of treated

areas. To address this, we employ two separate empirical designs, which take advantage of the

unique granularity of our satellite data in both space and time. First, we apply a difference-in-

discontinuities strategy that exploits the staggered rollout of the HRS at the province level. Like in

a classic regression discontinuity, we identify the causal effects of the HRS right at the boundary

between provinces that adopted the HRS and provinces that did not. Moreover, by observing

the same province borders over time, we can use fixed effects to control for any unchanging

differences. Under the weak assumption that areas just on either side of the border would have

followed parallel trends in the absence of treatment, we can then causally identify the effects

of the HRS. Second, we use separate, semi-official treatment data on the county-level rollout of

reform compiled by Almond et al. (2019) from historical gazetteers, and find similar null effects

on predicted yields using a staggered differences-in-differences design.

Our central finding is that the Household Responsibility System had a negligible, near-zero

effect on grain yields. Our difference-in-discontinuities estimates are statistically precise—we can

reject effects on yields as small as 5%, even three years after the onset of reform—and robust to
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a wide range of estimation approaches. We do not find evidence of larger effects in provinces

with a higher share of work teams adopting HRS, and furthermore find no evidence that the lack

of discontinuities are caused by confounding treatments or spillovers into neighboring areas.

Similarly, our county-level adoption estimates—using an entirely separate source of semi-official

treatment data—find no evidence that counties adopted the HRS sooner experienced faster yield

growth. Though our main focus is the causal effect of the Household Responsibility System

on yields, as an additional exercise, we also use our random forest to predict aggregate grain

yields across provinces in China. Our model predicts that aggregate yields did indeed increase

from 1978 to 1984. The absence of a detectable causal effect for the HRS and the continued

finding of yield growth suggests that another reform—a 1979 rise in state procurement prices,

which brought them closer to free market levels—may instead have been the main factor behind

China’s agricultural takeoff.

It is important to be precise about what we can and cannot say with satellite imagery. Yields—

output over harvested area—are visible from space, but labor productivity is not. This paper’s

findings are entirely consistent with the HRS increasing labor productivity in grain, freeing up

time for industry and other crops. Nonetheless, increasing grain productivity—in by far the

most important Chinese crops, rice and wheat—was a central part of the narrative around the

HRS (Li et al. 2016). This paper challenges this near-universal view, a result with implications

far beyond agriculture. One of the main drivers of Chinese macroeconomic growth has been

the enormous movement of labor from rural to urban areas. Growth accounting exercises have

concluded that agricultural productivity growth was needed to release labor from rural areas,

making agriculture, not manufacturing, the key ingredient in China’s GDP takeoff (Young 2003;

Brandt et al. 2008).

The consequences for human welfare are equally large. Ravallion and Chen (2007) find that

growth in the rural sector was responsible for 75-80% of the fall in the national poverty rate from

1981-2001, the “bulk” of which they attribute to the HRS. If China has indeed lifted 800 million

people out of extreme poverty since 1980—75% of the global total (World Bank 2022)—then our

understanding of the drivers behind the vast majority of global poverty reduction over the past

40 years will have to be substantially revised.
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Related Literature This paper revisits an older literature which established that the HRS had

a major effect on agricultural productivity growth in China (Lin 1988; McMillan et al. 1989). In

particular, it builds on Lin (1992), which estimates a production function over a panel of official

provincial data and finds that the HRS accounted for half of overall agricultural output growth

from 1978-84. It also builds on the subsequent work of Almond et al. (2019), which assembles

county-level data on the rollout of the HRS to identify a positive effect on grain output per

capita. We will use both the official province-level HRS treatment data from Lin (1992) and

the unofficial county-level HRS data Almond et al. (2019) in our identification strategies. Our

findings revise our understanding of one of the central reforms of China’s liberalizing period,

and should prompt greater skepticism about the economic statistics underlying our conception

of the Chinese miracle.

This paper also contributes to our broader understanding of the role of agriculture in devel-

opment. There is a long-running debate in the literature around the effects of land reform and

farm size on agricultural productivity: an influential view is that smallholder farms can be more

efficient (Vollrath 2007; Kagin et al. 2016), while an opposing view is that large farms benefit from

scale economies that make them more efficient (Foster and Rosenzweig 2017; Adamopoulos and

Restuccia 2020). China’s transition from large-scale collectives to small-scale household farms—

the largest land reform of its kind in history—has been enormously influential in that debate.

This paper’s null finding may temper some of the optimism around the universal efficiency of

smallholder farming.

Finally, this paper contributes to the growing, fruitful intersection between remote sensing re-

search and economics. Nightlights observed by satellites have become a well-accepted measure

for economic activity, particularly when there are political incentives to inflate the official eco-

nomic statistics (Henderson et al. 2012; Hodler and Raschky 2014; Martínez 2022). More recent

research has used daytime satellite imagery to measure contemporary outcomes like agricultural

output and poverty (Jean et al. 2016; Yeh et al. 2020; Huang et al. 2021), but to our knowledge this

is their first application in economic history. Prior research has tended to overlook older satellites,

like the Advanced Very High Resolution Radiometer (AVHRR) used in this paper, due perhaps

to their lower resolution and how hard they are to process. This paper shows that these earlier

measurements, while imperfect, contain a wealth of useful economic information; the techniques

5



developed in this paper can be applied to a wide range of historical settings—anywhere in the

world, from 1978 onwards. Given the central place of agriculture in historical development,

satellite-based measurement could open up vast new areas of economic research in settings like

postcolonial sub-Saharan Africa and the Soviet Union, where statistics on agricultural incomes

and output are either unreliable or nonexistent.

This paper is organized as follows. Section 2 introduces the historical context. Section 3

describes our data sources and presents our machine learning model to predict yields from

satellite imagery. Section 4 outlines our empirical strategy. Section 5 presents our main empirical

results, and discusses their implications. Section 6 concludes, placing our results in historical

context, and presents directions for future work.

2 Historical Context

Mao Zedong died in 1976, creating the political opening to reform the collectivized system of

agriculture that had prevailed in China since 1953. Crucially for this study, decollectivization did

not occur evenly across the country. While it was spurred by changes to national leadership, and

often pushed for by peasants from the grassroots level, it was most of all constrained and shaped

by provincial leaders, giving rise to the natural experiment at the heart of this paper. More detail

on the specific institutional structures of rural reform will be made available in an online History

Appendix.

The View from the Peasantry By the mid-1970s in China, every twenty to thirty agricultural

households were organized into work teams, which owned the land collectively and shared

both work responsibilites and output (Eisenman 2018). Every two to two dozen work teams

were organized into brigades, which were largely responsible for rural industry; and every ten

to twenty brigades were sorted into communes, which owned all the agricultural capital, and

served as the centers for public administration and services in rural China (Kelliher (1992), p. 9).

The conventional view is that the collective farming system gave households little incentive

to produce more. Teams had to sell a mandatory procurement quota in grain to the state, for

which they received a fixed price. This procurement price was lower than the price that would
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have prevailed in a free market, such that the grain procurement effectively acted as a tax on

farmers (Kelliher 1992). After deducting costs, work teams divided most of their net income

among households based on their size (Eisenman (2018), p. 193). If the team produced a surplus,

a system of work points gave households a cash bonus, usually based on their observed labor

inputs. But because supervision is costly, standard neoclassical agricultural models predict that

there are strong incentives to shirk on a collective farm, overwhelming any of the potential

efficiency gains from economies of scale (Lin 1988). Or, as one Hubei farmer succinctly put it:

“you’ve got Brother Zhang and Brother Li—if one works more and the other works less, it all

comes out about the same” (Kelliher (1992), p. 96).

In 1978, Anhui Province was struck by a severe drought. As an emergency measure to pre-

vent starvation, work teams in Anhui began openly experimenting with “household responsibil-

ity”. Rather than plant the winter wheat crop collectively, each working adult was allocated 0.1

hectares of land and three yuan for production costs (Kelliher (1992), p. 61). In exchange, they

would turn over 100 kilograms of wheat to the collective at harvest. Any surplus could be kept by

the household, to be used or marketed as they pleased. In effect, the old collective was broken.

Soon, with the support of provincial leaders like Anhui’s Wan Li and Sichuan’s Zhao Ziyang,

similar household responsibility systems began to be implemented in other provinces. Though

there were a wide range of different variations, the two most common were baochan daohu, which

rewarded households for over-quota production while retaining cropping, management, and in-

vestment decisions with the collective, and baogan daohu, which gave households close to full

responsibility over production and output. The latter was more popular among farmers because

of the greater freedom it gave them. But both household responsibility systems were united in

giving households a claim on any surplus output, after fulfilling a procurement quota to the

state.

In 1982, both baogan daohu and baochan daohu were finally legalized nationally, formalizing

these provincial reforms—and creating the Household Responsibility System. Baogan daohu—

literally, contracting directly with households—became the favored system in most provinces,

with work teams shedding their control over households’ agricultural decisions. Households

were now directly responsible to the state for a mandatory procurement quota, but the residual

claimants on any surplus that remained. The teams, now “villages” again after reform, kept
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ownership of the land, but the law guaranteed security of tenure for at least 15 years (Brandt

et al. 2004). The tractors and agricultural capital of the communes were redistributed (Eisenman

(2018), p. 258), and, accompanied by reforms to the procurement price system, rural markets

gradually reopened (Skinner 1985). Rural China was now firmly on the path to transition out of

socialism.

What factors shaped the adoption of the HRS across China? Responsibility systems were not,

in fact, new to the Communist period: during the famine of the Great Leap Forward, farmers

often broke from the collectives, and set up responsibility systems themselves in desperation, but

these experiments were invariably crushed by the Party. Mao’s death altered the national political

environment and made deviations from orthodoxy possible—but reform needed sponsors in

provincial leadership in order to survive.

The View from the Provinces Decollectivization proceeded unevenly across provinces, resisted

in some areas, pioneered in others. Figure 1 shows the date when over 50% of each province’s

work teams reported implementing the Household Responsibility System (HRS). Anhui was the

clear national reform leader starting in 1978, with most of its neighbors still beginning to adopt

reform in 1981. In 1982, the HRS became national policy, and Anhui’s neighbors caught up,

reporting close to full adoption by 1983 (at least in their official statistics).

Why did provinces vary so much in their rates of reform? Historians have emphasized the

importance of provincial leaders in setting the pace of decollectivization:

Provincial leaders generally played a pivotal role in the entire rural-reform process.

Although the impetus for change came from below and the issue was only settled with

a series of central-level decisions in 1980-81, innovative provincial leaders encouraged

and protected the survival and spread of responsibility systems within their respective

local areas... (Teiwes and Sun (2016), p.75)

The paradigm was Anhui’s First Party Secretary Wan Li, who had been appointed in 1977 for

orthogonal political reasons—to reduce the military’s influence in provincial politics (Chŏng

(2000), p. 94). When peasants began implementing household responsibility in 1978, Wan Li

allowed the experiment to continue. Later, he protected it from mid-level cadres who wanted to
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Figure 1: Adoption Dates of Household Responsibility
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This figure shows the dates at which over 50% of the province’s work teams reported having adopted the Household
Responsibility System (HRS). “A” marks Anhui Province, “J” marks Jiangsu Province, and “H” marks Heilongjiang
Province. Provincial HRS adoption data is from Lin (1992).

reverse the reforms, and encouraged further experimentation throughout his province (Teiwes

and Sun (2016), p. 101). When faced with similar grassroots pushes for household responsibility,

Sichuan’s Zhao Ziyang and Guizhou’s Ma Li permitted and even encouraged greater reform.

By contrast, more conservative provincial leaders could hamstring the progress of reform. In

the north, Heilongjiang Province was a notable laggard. Heilongjiang’s leaders resisted small-

scale household farming, thinking it an inappropriate system for a wheat-growing region where

agriculture was heavily mechanized. In June 1981, only 0.7% of work teams had adopted the

HRS, showing the importance of provincial authorities in containing the spread of reform (Chŏng

(2000)). Heilongjiang only caught up after the HRS was made national policy—and even then

only under immense pressure from the center (Weber 2021)—and the decollectivization process

was belatedly rushed in the early 1980s.

The View from the Top While changes to China’s national leadership (namely, Mao’s demise)

created the political conditions needed for reform, the resulting power vacuum made provincial

leaders crucial in determining the pace and spread of decollectivization.

Mao’s immediate successor was Hua Guofeng, a relatively junior official he had handpicked

from Hunan Province. Hua’s authority was much weaker than Mao’s, and reformers and hard-
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liners in Beijing soon openly clashed over the reform question. Contrary to popular belief, Deng

Xiaoping was not involved in the rural reform process until reforms were well underway.2 At

first, the hardliners held sway—November 1978’s Third Plenum Regulations explicitly banned

baochan daohu (Teiwes and Sun (2016), p. 66). But, in response to lobbying from figures like Wan

Li, a document from September 1979’s Fourth Plenum carved out three exceptions for house-

holds engaged in sideline occupations, remote areas, and single, isolated households. A Septem-

ber 1980 Party notice expanded the exceptions again, this time to “poor and backward areas” and

“production units heavily dependent on state subsidies”. Finally, January 1982’s Central Docu-

ment No. 1 officially enshrined baochan daohu and baogan daohu as “the production responsibility

systems of the socialist economy” (Chŏng (2000), p. 58).

This conflict at the top had two effects on the reform process. First, because of the confused

and contradictory directives coming from Beijing, provincial leaders took the lead in implement-

ing reform. Second, because of the resistance from hardliners, HRS was first permitted only in

poorer, famine-stricken, and economically marginal areas, inducing negative selection in early

adopters. These facts will inform our identification strategy: we will use the staggered rollout

of the HRS across provinces as a source of variation, while taking into account that areas that

reformed first were negatively selected.

The Productivity Effects of Reform Figure 2 shows how official grain yields rose 43% in the six

years between 1978 and 1984, a 6% annual rate—a doubling of the reported 3% growth rate from

1949 to 1978. Over just six years, reported rice yields grew by 1.4 tons, or 35%, while wheat yields

grew by 1.1 tons, or 60%. Spurred by this apparent success, the spread of decollectivization was

gradually sanctioned by a growing number of provinces, until the newly christened Household

Responsibility System (HRS) became national policy in 1982.

The scholarly consensus, summarized in Table A4, has largely supported the official view that

the HRS was responsible for this burst of agricultural growth. The outcome measures used by

prior papers vary from agricultural TFP to grain per capita, but all show a sizable contribution of

the HRS. However, all prior econometric analyses have had to rely on central or local government

2Deng made his first public comments on baochan daohu only on May 31, 1980, long after decollectivization had
begun in Anhui.
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Figure 2: Reported grain yields in China
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This figure shows reported national grain yields (output in metric tons / hectares of land) for China, from the State
Statistical Bureau (SSB).

data sources. Other sources have expressed skepticism. A CIA report from 1983 attributed

yield growth instead to “good weather, increased use of fertilizer, and other related reforms,

such as a more rational state pricing system” (CIA 1983). Looking even at the official national

statistics, Bramall (2004) notes that agricultural output growth accelerated in 1976-80, when land

reform hadn’t even been implemented by most work teams until 1982. Moreover, provinces

that decollectivized earlier (Anhui, Sichuan) did not seem to grow faster than provinces that

decollectivized later (Heilongjiang, Jiangsu).

The “more rational state pricing reform” mentioned in the CIA report refers to another plau-

sible contributor to rising yields: a major reform to the procurement price system in 1979. That

year, under Hua Guofeng, the state raised the average procurement price for quota grain by 20%

and the bonus for above-quota grain from 30% to 50% (Sicular 1988). Quota and above-quota

prices for oil crops and cotton were raised, as was the quota price for sugar. These brought prices

closer to the levels that would prevail on a free market. McMillan et al. (1989), Lin (1992), and

Bramall (2004) all attribute some portion of agricultural productivity growth to the price reform,

but the former two sources (based on official aggregate statistics) emphasize the HRS as the main
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driver. Disentangling the effects of the HRS from the near-contemporaneous price reform will

require careful causal identification. We turn to constructing the satellite-based data needed for

this analysis in the following section.

3 The View from Space: Measuring Yields with Satellites

3.1 Training Sample: Agricultural Data

This paper aims to produce estimates of agricultural yields without using any official Chinese

data. We will present results using both raw satellite data, which we will show contains a strong

signal of agricultural productivity, and using a machine learning model, which will transform

these raw data into interpretable yields. To train this model, we assemble a pooled sample of

agricultural data from several neighboring countries: Japan, Korea, India, and Pakistan. Table A5

summarizes these sources in greater detail. We chose these countries to mimic the climatic and

agricultural conditions of China’s two main grain crops, rice and wheat.

Rice is the main crop in China, accounting for 50-55% of its official cereal output alone in

the 1970s and 1980s. Single-cropped rice, which is more common farther north, is planted in

April through June and harvested in August through October. For double-cropped rice, which is

most common farther south, the first, early crop is planted in March through May and harvested

in July, while the second, late crop is planted in July through August and harvested in October

through November. To predict rice, we include Japanese prefecture-level yields from 1981-2013,

South Korean county-level yields from 1981-2013, and Indian district-level yields from 1981-2005.

All three countries have a similar rice seasons to China, centered around the summer monsoon,

with some variation based on latitude. Single-cropping is predominant in Japan and Korea,

where labor is relatively expensive, but double-cropping occurs in the south.

Wheat is primarily grown in northern China, accounting for around 15-20% of official cereal

production in the 1970s-80s. The overwhelming majority of wheat in China is winter wheat,

which is sown at the end of September and harvested in early or mid-June the next year (USDA

2023). During the early reform period, Myers (1978) estimates that 87% of total wheat sown area

was winter wheat, while in 2022 the USDA estimated it was 95% of China’s total wheat output.

To predict wheat in China, we include Indian district-level yields from 1981-2005 and Pakistani
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district-level yields from Punjab province from 1990-2013.3 India and Pakistan have a similar

winter wheat (or rabi wheat) crop to China, albeit with an earlier March-May harvest.

Though we do not employ it in our predictions or regressions, in the text we also use Chinese

official rice and wheat yield data from the State Statistical Bureau as a point of comparison.

3.2 Satellite Data

This paper uses imagery from the Advanced Very High Resolution Radiometer (AVHRR) to

measure agricultural yields. AVHRR, which was carried by National Oceanic and Atmospheric

Administration (NOAA) satellites, collected imagery at red and near-infrared bands at a 4km

resolution, twice daily, from late 1978 to 2013. We aggregate our satellite data up both over space

and time. To make computation feasible, we bin observations into a grid of 0.05-degree cells,

which are roughly 5km squares around the latitude of Anhui Province (31 degrees N). This gives

us a total of 345,608 grid cells in China, and 3,870,470 observations from 1978 to 1990.4

The Normalized Difference Vegetation Index Measuring agricultural yields with satellites re-

lies on a simple biological observation: plants use light from the visible part of the electromag-

netic spectrum to photosynthesize, while reflecting back higher-frequency light (Taiz et al. 2022).

Viewed from space, a healthy plant will thus reflect more near-infrared (NIR) light relative to red

or green light than a stressed plant. This insight motivates one of the most common measures of

crop cover in environmental science, the Normalized Difference Vegetation Index (NDVI):

NDVI =
NIR− Red
NIR + Red

. (1)

Dating back to the 1970s, NDVI has become one of the central measures in a vast literature

predicting agricultural outcomes using satellite data.5

Figure 3 shows the evolution of NDVI from the AVHRR over the course of 1982 and 1990 in

China. As one might expect, NDVI shows a strong seasonal pattern, rising steadily in the spring

3We thank Björn Brey and Matthias Hertweck for generously sharing their data and shapefiles, which match the
ICRISAT yield data with a harmonized set of Indian districts.

4Among Chinese territories at the time of the reform, we exclude Tibet due to the lack of HRS treatment data.
5For examples, see Tucker (1979), Hamar et al. (1996), and Bognár et al. (2022). See Asher and Novosad (2020) for

a recent application in development economics, studying the effect of rural roads in India.
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Figure 3: Normalized Difference Vegetation Index (NDVI) over the year
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Figure 3 shows the evolution of NDVI over 1982 (blue) and 1990 (red) for an unweighted average of all Chinese
provinces, using the NOAA’s AVHRR satellite data. Weekly observations are smoothed using a 4-week moving
average.

and peaking in the fall—right before the main harvest, when there is the maximum amount of

biomass on the ground. The main staples in China, wheat and rice, are mostly harvested in Q2

and Q3: winter wheat is harvested from May to June, spring wheat is harvested from August to

September, while single-cropped rice is harvested from August through October (USDA 2023).

We can exploit the temporal richness of the AVHRR data and include multiple observations

throughout the year in our models, allowing us to predict the yields of these major grains, while

ignoring other crops that peak at different times. We also note that the overall level of NDVI

is significantly higher in 1990 than in 1982, suggesting that agricultural productivity did indeed

increase over that time period.

Figure 4 shows scatters of annual maximum NDVI against reported grain yields for our

sample of Asian countries. To ensure we are capturing time series variation in agricultural pro-

ductivity, and not just the fixed cross-sectional differences between places, we de-mean the data,

residualizing both NDVI and yield with respect to administrative unit fixed effects. In all cases,

NDVI alone is predictive of yields, with a highly significant (p < 0.001) and positive coefficient
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Figure 4: Annual Maximum Normalized Difference Vegetation Index (NDVI) vs. Yield
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(d) Pakistan
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Figure 4 plots the annual maximum NDVI residual against the rice yield residual in Japan (top-left), South Korea
(top-right), and the wheat yield residual in India (bottom-left) and Pakistan (bottom-right). Yield and NDVI are
residualized with respect to a unit fixed effect. Correlation coefficients r and regression equations shown on the plots.
∗ ≤ 0.05,∗∗ ≤ .01,∗∗∗ ≤ .001.

across all settings. The coefficients differ across samples, ranging from less than 1 for Japanese

rice yields to more than 5 for Pakistani wheat yields, highlighting that these relationships are

context-dependent. And of course, there remains unexplained variation in yields—while the re-

gression coefficients are significant, the correlation coefficients range from around 0.2-0.4. The

scatters suggest that the relationships between yield and NDVI is unlikely to be simply linear,

and richer sets of covariates may be needed for precise prediction. In particular, beyond the

simple yearly maximum, we can build more sophisticated models that exploit variation in NDVI
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within the year to better predict yields on the ground.

3.3 Yield Prediction

Random Forests We can now turn to a more flexible machine learning models of yield pre-

diction, random forest regression, which has been deployed successfully in a large number of

studies to predict agricultural yields using remotely sensed data.6

Random forests work by combining the predictions of a large number, or forest, of regression

trees. These individual regression trees predict an outcome by progressively splitting the data

into smaller subsamples according to the values of their covariates (or “features”), then assigning

the outcome mean for that subsample. For instance, if the outcome is “rice yield” and a feature

is “average temperature during the growing season”, a simple one-split tree (given the dangers

of high heat) might split at “> 30◦C”. When predicting, the model assigns yields exceeding

> 30◦C the average from training data above this split. More sophisticated trees could split on

further covariates, for instance “rainfall > historical mean”. Each individual tree is estimated on

a different bootstrapped sample of the original data, using only a random subset of the available

features to determine each split, which is chosen to minimize prediction error. The predictions

of these trees are then averaged to form the random forest’s overall prediction.

Random forests have two properties that make them well-suited to our agricultural prediction

setting. First, the individual regression trees are effectively non-parametric matching estimators,

which make them good at capturing non-linear relationships between variables like NDVI and

yield. Second, because of their “ensemble approach” of combining a large number of weaker

individual predictors, random forests are less prone to overfitting than other methods, and can

achieve strong predictive power out-of-sample with minimal tuning of their hyperparameters

(Athey and Imbens 2019). We do not use Chinese data in training to avoid re-introducing bias

into our model, making these out-of-sample properties particularly important.

Features NDVI from sensors like AVHRR can be noisy because of idiosyncrasies like clouds,

aerosols, and variations in satellite positioning. To smooth out this variation and to capture the

6See van Klompenburg et al. (2020) and Bali and Singla (2022) for systematic reviews of the machine learning and
crop prediction literature. Recent examples in China include Cao et al. (2020) and Han et al. (2020).
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lower-frequency patterns of crop growth, for each AVHRR pixel we fit harmonic regressions in

NDVI with two pairs of terms:

f (t) = a0 + (a1 cos t + b1 sin t) + (a2 cos 2t + b2 sin 2t)

where t is the days of the year from the start of planting, scaled into radians.7 We then use the

fitted harmonic regressions to predict NDVI at 16 evenly spaced points in the harvest year (e.g., 0

days from the start of planting, 24 days from the start of planting, etc.), up to nine months out of

the year.8 We use international crop calendars from the US Department of Agriculture to set the

beginning and end of each crop’s annual cycle. This approach allows us to focus on the growing

cycle of a specific staple crop, interpolating even when observations are occasionally missing.

Next, for each unit of analysis (e.g., an Indian district or a Japanese prefecture) at each of

the 16 points in the year, we construct a histogram of the fitted NDVI values of the pixels inside

that unit, counting the number of pixels that fall into each bin. (This is an adaptation to random

forests of the deep learning feature reduction approach of You et al. (2017).) We use a total of 10

evenly spaced bins up to a maximum NDVI value of 0.3, above which plant cover is more likely

to be forest than crops. We then use the frequencies of these histograms as features, rather than

the raw NDVI values, giving us a total of 16× 10 = 160 NDVI-based features for each yearly

observation of an administrative unit. This helps capture the variation in vegetation within an

administrative unit and across time, in a scale-invariant way.

Outcomes We predict grain yields (tons of output over area in hectares) for two major crops:

rice and wheat. When training the random forest, in the training sample, we set the grain yield

to be equal to the crop with the highest reported acreage. As we are ultimately interested in

changes in yields, not their levels, as our main outcome, we train our model to predict log yield

residuals, from regressing log-yields on their administrative unit fixed effects—or equivalently,

de-meaning log yields by their historical average.

7Recall from high school (though we certainly didn’t) that the linear combination of sine and cosine is equal to a
single sine function with phase shift and scaled amplitude: a cos x + b sin x = c cos(x + γ), where c = sgn(a)

√
a2 + b2

and γ = arctan(−b/a). Harmonic regression is frequently used in remote sensing to smooth noisy NDVI series, see
for example Wang et al. (2020).

8Nine months covers the growing season for almost all crops, and avoids capturing rising NDVI from next year’s
planting.
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Figure 5: Predicting grain yield residuals with a random forest, trained on pooled foreign sample

(a) In-sample
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(b) 5-fold cross validation
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Figure 5a plots the predicted residualized grain yield against the reported grain yield for the pooled foreign sample,
using a random forest model with transformed NDVI histograms as features. Figure 5b plots the out-of-sample
predictions of provincial grain yield using the same random forest model trained using five-fold cross-validation. The
line of best fit is in red.

Validation Figure 5 shows the predictive performance of the random forest model trained on

the pooled data. On the left, Figure 5a shows the in-sample performance, plotting reported

yields from the pooled training sample against the model’s predicted yields. The model’s in-

sample predictions are quite tight around the actual yields, with a correlation coefficient of close

to 1. Of course, a natural concern is that the model is overfitting towards the training set. On

the right, Figure 5b plots the result of 5-fold cross-validation, where each predicted log-yield

residual (x-axis) is estimated on four parts of the data and compared to the reported yields from

the left-out fifth (y-axis). This approach provides a robust estimation of the model’s predictive

performance by ensuring that the predictions are made on data not used during training. The

predictive performance naturally decreases from the in-sample exercise, but the correlation coef-

ficient remains relatively high at over 0.6, comparing favorably to other yield prediction machine

learning models in more modern contexts (Cao et al. 2020; Bognár et al. 2022).

As we prepare to turn to our main regressions, a critical test of our random forest model

will be if we can detect the effect of real-world events on its predicted yields in a regression

setting. (If not, finding a statistical null effect with our model yields might simply be because

the random forest is predicting a vector of noise.) A natural candidate is weather shocks—in

particular, temperature shocks during the growing season. For simplicity, we use the main single-
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Table 1: Detecting weather shocks in Chinese grid cells

(1) (2)
>1SD temp. shock in growing months 0.0519*

(0.0237)

<-1SD temp. shock in growing months -0.0650***
(0.0136)

Observations 1733239 1733239
R2 0.475 0.476

Table 1 shows the effects of positive and negative temperature shocks on predicted log-yields for Chinese grid cells.

crop rice growing season, which is April through October. We merge in monthly minimum

temperature data from TerraClimate for each grid cell, then calculate the cell-level historical

mean and standard deviation. We then compute two different shocks: a positive shock, where

the growing season temperature is 1SD higher than the historical mean; and a negative shock,

where it is 1SD lower. Then, with our gridded Chinese data, for cell i in year t, we estimate

yi,t = α + βShocki,t + δi + ε i,t (2)

where yi,t is our predicted log-yield residuals from the random forest, Shocki,t = 1 if the weather

shock occurs in year t and δi is a unit-level fixed effect. We cluster standard errors ε i,t at the

province level.

Table 1 shows the estimated effects of these weather shocks on our model-predicted log yield

residuals. We find that a positive >1 SD weather shock increases measured grain yields, by

around 5%, while a negative <-1 SD weather shock decreases measured grain yields, by around

6%. Both estimates are statistically significant at the p < 0.05 level. Note that we did not use any

weather variables as features when training our model—the model is able to detect the effects of

these weather shocks using features that are entirely transformations of NDVI observed by satel-

lites. The magnitude and sign of these estimates accord with the agronomic and environmental

science literatures in China. For positive temperature shocks, Chen et al. (2016) find that an

increase in minimum temperature during the vegetative stage increased the yield of paddy rice,

while Huang et al. (2013) find that a 1-degree increase to growing-season temperatures increased

grain yield by 7% (for scale, the population SD is about 0.8 degrees in our dataset). Similarly, for
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negative temperature shocks, Liu et al. (2013) find that rice yields in Heilongjiang fell about 0.4

tons/ha for each 1 degree fall in temperature (roughly a 10% yield shock in our setting), while

Li et al. (2022) find that cold stress during the critical heading to flowering stages was negatively

associated with rice yield in Yunnan, the Northeastern Plain, and south of the Yangtze.

These validation exercises confirm that our model is sensitive enough to detect relatively

small (around 5%) shocks to yields in a regression setting. We can now turn to identifying the

causal effects of the HRS.

4 Empirical Strategy

Our main identification strategy exploits the staggered timing of HRS adoption across China’s

provinces. Our main treatment variable is from the provincial-level data from Lin (1992). We

code a province as having been “treated” with the HRS if the share of work teams in the province

who have adopted HRS exceeds 50%.9 Figure 1 maps when provinces crossed this threshold in

adopting the HRS. 11 provinces crossed the 50% threshold in 1981; 9 more did in 1982; 7 did in

1983; and the last province did in 1984.

The major empirical concern with identifying the causal effect of the HRS is selection: as

noted in Section 2, reform was originally targeted at areas that were poor, remote, or at risk of

famine—recall that the first decollectivization experiments began in Anhui in 1978, in response

to drought. In other words, negative selection was baked into the very design of the reform:

provinces that adopted earlier were more likely to be worse-off. This critical feature is not cap-

tured in earlier provincial panel regression-based estimates of the HRS’s effect, like Lin (1992),

which lacks a causal design. This raises the concern, for instance, that the HRS is merely captur-

ing catch-up in places that were fundamentally poorer.

We address this concern by using a difference-in-discontinuities design, which extends the logic

of a border regression discontinuity (RD) design to a multi-period setting. In a conventional bor-

der RD, assuming that all relevant factors other than treatment vary smoothly across the border,

any discontinuities in outcomes observed at the border can be causally attributed to the treat-

ment. Weather events (like Anhui’s drought in 1978), climate, and other natural characteristics

9Specifications with other cutoffs are available in the appendix. The results are similar.
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relevant for agriculture are likely to be continuous in space, and satisfy this assumption across

province borders. However, provincial boundaries also reflect economic and political differences

that are unlikely to satisfy the classic RD assumption for causal identification.

A differences-in-discontinuities design allows us to relax this assumption. By observing the

same geographic points repeatedly over time, we can use fixed effects to control for any time-

invariant discontinuities along the border. The identifying assumption then becomes that cells

just on either side of the border follow parallel trends in their potential outcomes, akin to the

parallel trends assumption in a differences-in-differences design. In other words, we can control

for any fixed differences (natural, political, or otherwise) at the border, alleviating concerns about

selection, and we can identify the effects of the HRS from changes in the border discontinuity

over time—assuming that no other policies change at the same time.

We follow the Dube et al. (2023) local projections approach, where treatment effects are esti-

mated with separate regressions for each horizon h. Formally, for cell i in border group b in year

t, at horizon h, we estimate

yi,b,t+h − yi,b,t−1 = βh∆Di,b,t + γb,t+h(Ri × Bb,t) + δb,t+h(Ri × Bb,t × ∆Di,b,t) + Bb,t + eh
i,b,t (3)

where Di = 1 if over 50% of the work teams in that cell’s province have adopted the HRS, Bb = 1

if cell is closest to border b ∈ {Anhui-Jiangsu, Guangdong-Guangxi...}, and Ri is distance to the

border. We include cell-level fixed effects (implicitly, by differencing out yi,t−1), and border-by-

year fixed effects Bb,t. Following Gelman and Imbens (2019), to avoid overfitting, we use local

linear functions of distance for the RD, allowing for different slopes on the running variable

across each border for each year.

We estimate this equation over our cell-level observations over all provinces in China from

1978 to 1990. Our baseline specification includes observations that are up to 50 kilometers away

from the border. Our chief object of interest is βh, the change in the border discontinuity in the

outcome y between a province not yet treated with land reform and one that experienced land

reform h years ago. This βh is the pooled effect over all provincial border pairs in China. In our

results, we will report βh for each time horizon h, as an event study.

21



Figure 6: Differences-in-discontinuities effect of HRS adoption on maximum NDVI
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This figure shows the event study of maximum yearly NDVI following the treatment of provincial decollectivization,
when 50% of the province’s work teams report having adopted the HRS, estimated using Equation 3. The bars show
the 95% confidence intervals around the point estimates, where the standard errors are clustered at the border-group
level.

5 Empirical Results

5.1 Differences-in-Discontinuities

Main Result Figure 6 plots our estimates of the border discontinuity in maximum yearly NDVI

at each year-horizon h after decollectivization, βh from Equation 3. We do not find evidence that

decollectivization increased NDVI at the border. Effect sizes are near 0 for all time horizons,

with the tight standard error bounds—which we compute clustered by each of the 81 border

groups—able to rule out positive effects as small as 0.01 NDVI units. Even 3 years after the

onset of reform, the effects of decollectivization are not statistically different from 0 at the 95%

confidence level, and the upper end of the confidence interval is smaller than 0.01 NDVI units.

The obvious next question is how these maximum NDVI differences translate into agricultural

yields. Recall from Section 3.3 that maximum NDVI is highly predictive of harvest yields even in

a simple univariate regression. A quick back-of-the-envelope calculation, based on the slopes in

the scatter plots in Figure 4, suggests that, even with the largest of slope coefficients (over 5), our
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Figure 7: Differences-in-discontinuities effect of HRS adoption on estimated log yield
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This figure shows the event study of model-estimated log grain yield following the treatment of provincial decol-
lectivization, estimated using Equation 3. The bars show the 95% confidence intervals around the point estimates,
formed using a two-stage bootstrap procedure described in the text.

NDVI point estimates would translate into yield changes smaller than 0.05 tons per hectare—a

tiny fraction of the reported 0.8 ton grain yield increase from 1978-84. For more precise estimates,

we can convert satellite measurements into yields by using the random forest model trained on

the pooled sample in Section 3.3. For each cell, we estimate the yield using the remote sensing

data, then re-estimate Equation (3) using the model-generated yields as an outcome variable.

Figure 7 plots the effects of the provincial rollout of the HRS on our model-estimated log

yields. The point estimates on yield remain indistinguishable from 0. Moreover, we retain enough

statistical precision that we can reject small effects of the HRS on grain yields—we can rule out

an effect of 0.05 log-points, or around 5%, even three years after the onset of reform. (A word

on inference and the calculation of these standard errors in a moment.) These results are robust

to variations on our core specification—we can vary the distance threshold by 10km increments

and allow for a 5km discontinuity “donut hole”, where we drop grid cells whose centroid is 5km

or less from the border (Figure A12). Moreover, the magnitudes are consistent with the simpler

maximum NDVI results, produced using raw satellite data without the intermediary of a model.
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We compute standard errors using a two-stage bootstrap procedure—because our yields are

themselves estimated data, conventional clustered standard errors may understate the confidence

intervals. In the first stage, we draw a bootstrap sample of the training data, clustering by ad-

ministrative unit, then estimate the yield-NDVI relationship using the random forest. In the

second stage, we draw a bootstrap sample of the satellite data, which we plug into the estimated

yield-NDVI relationship from the previous stage to produce model-estimated yields. We then es-

timate the regression discontinuity, with estimated yields as the outcome variable. We repeat this

for 500 bootstrap samples, using the sample standard deviation of the regression discontinuity

coefficient estimates to form the standard error.

How should we assess the magnitude of these effects? The official increase in national grain

yields from 1978 to 1984 was 0.8 tons per hectare, or 43% (0.357 log-points). Using a decom-

position of aggregate time series, McMillan et al. (1989) finds that the HRS was responsible for

78% of the 1978-84 increase in agricultural TFP, while using a panel regression of provinces, Lin

(1992) concludes that the HRS’s contribution was closer to 90%. By contrast, we find that our

95% confidence intervals overlap with 0, and rule out even a 5% effect on yields. While TFP is

a different quantity from yield (land productivity), our differences-in-discontinuities estimates

are quantitatively far too small to be consistent with the view that the HRS had a large and

transformative effect on yields.

Staggered Timing One potential complication with our differences-in-discontinuities design is

the now well-known result that two-way fixed estimators can be biased when there is staggered

treatment timing (Borusyak et al. 2023; Goodman-Bacon 2021; Sun and Abraham 2021)—a con-

cern that applies to the rollout of the HRS. However, even with staggered treatment, the local

projections estimator will remain unbiased if treatment effects are homogeneous across cohorts.

We argue that this assumption is reasonable in our setting, given our finding of a tight null effect.

This null effect holds both in shorter time horizons and in longer ones, as we will show in the

later county differences-in-differences design.10

As a robustness check in the appendix Table A6, we also apply the “clean control” local

projections approach proposed by Dube et al. (2023), where we restrict comparisons to treated

10Moreover, given the lack of treatment dynamics, the assumption of static treatment effects is also reasonable.
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Table 2: Continuous Effects of the HRS on Yield

Horizon (h years after reform)
0 1 2 3

Binned
50% ≤ HRS < 60% -0.01 -0.01 -0.02 -0.02

( 0.02) ( 0.01) ( 0.01) ( 0.0)
60% ≤ HRS < 70% -0.01 -0.06 -0.05 -0.03

( 0.01) ( 0.04) ( 0.05) ( 0.04)
70% ≤ HRS < 80% 0.00 0.01 -0.02 -0.01

( 0.01) ( 0.01) ( 0.02) ( 0.01)
80% ≤ HRS < 90% 0.00 0.02 0.02 0.02

( 0.01) ( 0.02) ( 0.03) ( 0.02)
90% ≤ HRS < 100% 0.01 0.03 -0.01 0.02

( 0.04) ( 0.04) ( 0.04) ( 0.02)

This table shows the regression estimates for Equation (4) for different horizons h. The top row shows the results for
a linear interaction with the share of provincial work teams who have adopted the HRS. The bottom row shows an
interaction with indicators for 10% bins of households who have adopted the HRS.

provinces bordering “clean control” units that haven’t yet been treated. Restricting the sample

in this way constrains us to looking only one year after reform (since h = 1 requires that 2 years

have elapsed where one province has been treated and its neighbor has not). However, restricting

to clean control comparisons does not change the results.

Continuous Treatment Our estimates so far have relied on a binary coding of HRS treatment.

How should we think about the continuous effect of an increase in HRS share—did provinces with

higher HRS shares experience faster yield growth? To gauge the effects of a continuous change

in the provincial HRS share (the dose-response), we can modify Equation (3) by interacting the

treatment indicator Di,b,t with 10% bin indicators of HRSi,b,t, the share of the province’s work

teams who have adopted HRS—e.g., if the HRS share falls between 50%-60%, 60%-70%, etc.

Formally,

yi,b,t+h − yi,b,t−1 = βh,0∆Di,b,t × 1{50 < HRS < 60}i,b,t + · · ·+ βh,4∆Di,b,t × 1{90 < HRS < 100}i,b,t

+ γb,t+h(Ri × Bb,t) + δb,t+h(Ri × Bb,t × ∆Di,b,t) + Bb,t + eh
i,b,t. (4)

Table 2 summarizes the results of estimating Equation (4). We do not find evidence that the

effect size is increasing in HRS—the standard errors are large enough that we cannot rule out
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that any of these estimates are different from 0. Thus, we do not find evidence that the HRS had

a positive heterogeneous effect on yield, where provinces with larger HRS shares experienced

higher yield growth.

5.2 Threats to Identification

Given these surprising null results, and the literature’s strong consensus in support of a strong

effect of the HRS, it is natural to ask what factors other than the HRS might be driving the

patterns we observe. The main threats to causal identification in our staggered-difference-in-

discontinuities framework are confounding treatment, spillovers, and core vs. border effects.

Confounding Treatment A critical assumption for our identification strategy is that no other

policy changes affected agriculture around decollectivization that could cause differences along

provincial borders. Other than the HRS, the major agricultural policy change during this study

period was the 1979 rise in procurement prices. However, these price rises did not differ sub-

stantially by province, and thus cannot influence the estimated border effects.

We do not observe any other national policy changes affecting agriculture during this time

period. To check this statistically, Figure 8 plots event studies of key agricultural inputs at the

provincial level—number of draft animals, total horsepower of farm machinery, total fertilizer

application, and total agricultural investment—from the State Statistical Bureau, around when

50% of work teams adopted the HRS. We do not observe any changes in these variables around

the time of treatment. Moreover, because our main empirical finding is a null effect, if one’s

prior is that the HRS was a boon for productivity, the main threat to identification would be the

unlikely coincidence of negative relative productivity shocks in treated areas, happening simulta-

neously with the HRS and cancelling out its positive effects. While noisy, the event study plots

show that it is unlikely that this kind of negative compound treatment is driving our results.

Spillovers Our causal estimates are derived from discontinuities measured at province borders.

A common concern in this kind of geographic design is that the treatment of reform “spilled

over” into neighboring provinces. If farmers were able to migrate across provinces and bring

decollectivizing reforms with them, or if land reform spread through word-of-mouth across the
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Figure 8: Agricultural Inputs around Decollectivization
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This figure shows the event study of province-level agricultural inputs—draft animals, the total horsepower of farm
machinery, total fertilizer application, and total agricultural investment—around the treatment event of provincial
decollectivization. Input data from the State Statistical bureau (SSB).

border, then yields may have also risen in “control” provinces, biasing the estimated effect of

land reform towards 0.

Two institutional features in this setting make spillovers unlikely. First, China’s hukou (house-

hold registration) system effectively banned migration during this time period. Each person was

categorized as “agricultural” or “industrial” based on their place of registration (typically, their

birthplace), and had to seek an official transfer to move (Cheng and Selden 1994). Official trans-

fers were rare. Even in the 1980s, the share of the population living in a location different from

their de jure residence was only 0.6% (Chan 2009). The hukou system’s migration restrictions were
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only relaxed in 1984, when migrants seeking work in small towns were allowed to move.

Second, a strong system of ideological control sought to prevent the spread of the HRS. Until

1982, the legal status of the HRS was unclear, and more conservative provinces tried to contain

its spread across their boundaries—in one notable example, slogans were even broadcast across

the Anhui-Jiangsu border “denouncing Anhui’s revival of capitalism” (Teiwes and Sun (2016),

p. 142). Given the high capacity of the Communist Chinese state, the support of cadres and

higher-level officials were likely necessary for the HRS to systematically spread; indeed, research

on the spread of the HRS has emphasized the role of provincial governments in controlling when

farmers could switch over to the HRS (Bai and Kung 2014).

Naturally, we do not have any data to observe any illicit spread of the HRS, so we cannot

directly rule out the possibility of spillovers. However, we can test for the effects of spillovers

under the assumption that, if they exist, they would decay in distance away from a treated

area—like if the reform spread across province borders through word-of-mouth. Using a similar

functional form as before, we can estimate

yi,b,t+h − yi,b,t−1 = βh∆Di,b,t + γt+hRi + δt+h(Ri × ∆Di,b,t) + Bb,t + eh
i,b,t (5)

where the focus is now on γt+h, the slope of the outcome in a not-yet-treated province neighbor-

ing a treated province as one approaches the border. By not interacting distance with border-by-

year effects Bb,t as in Equation (3), we pool slopes across all untreated provinces and all years into

a single coefficient. If γt+h < 0, then yields increase on average as distance to a treated province

decreases, suggesting that treatment is spilling over into its untreated neighbor. (Figure A13 il-

lustrates this logic.) We can also observe the evolution of these spillovers over time by estimating

Equation (5) for each horizon h.

Table 3 shows our estimates of γt+h from Equation (5). We cannot reject that the slope γt+h

is different from 0, at all time horizons. The point estimates are negative at the 1 and 3-year

horizons, though the standard errors are large and the point estimates are small. We can also

observe the effect of distance nonparametrically, by substituting the linear distance term in Equa-

tion (5) with indicator variables for each 10km distance bin—i.e., if a cell’s centroid is 0-10km

away from the border, 10-20km away, etc. With this more flexible approach, we still find no
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Table 3: Spillovers into untreated provinces, in distance to the border

Horizon (h years after reform)
0 1 2 3

Linear
γt+h (in 1000 km) 0.03 -0.08 0.02 -0.12

( 0.07) ( 0.14) ( 0.19) ( 0.16)
Binned
0km ≤ Ri < 10km -0.00 0.00 0.00 0.01

( 0.00) ( 0.04) ( 0.06) ( 0.02)
10km ≤ Ri < 20km -0.00 0.00 0.00 0.01

( 0.00) ( 0.04) ( 0.06) ( 0.01)
20km ≤ Ri < 30km -0.00 0.00 0.00 0.00

( 0.00) ( 0.04) ( 0.06) ( 0.01)
30km ≤ Ri < 40km -0.00 0.00 0.00 0.00

( 0.00) ( 0.04) ( 0.06) ( 0.01)

This table shows the spillover estimates of Equation (5) on estimated yields in untreated provinces for different yearly
horizons h. The first row shows the linear specification in absolute distance to the border (in 1000s of kilometers, to
make the effect visible). The second set of rows shows the binned specification, where distance is grouped into 10
kilometer bins from the border with a treated province.

evidence that yields in untreated provinces are increasing as one approaches the border with a

treated province. These results collectively suggest that spillovers are not driving our null results.

5.3 Alternative Strategy: County Rollout

We can test the robustness of our null finding by using an alternative identification strategy.

Almond et al. (2019) collect county-level data of the rollout of the HRS from county gazetteers,

creating a separate source of treatment variation from the central government records used in

Lin (1992). In their definition, a county becomes treated when “collectively owned land was first

contracted to individual households in a few villages”. Figure A11 maps out when the counties in

the Almond et al. (2019) dataset become treated. We combine this county-level rollout treatment

with mean NDVIs and predicted yields of counties as our outcome variable.

We view this as county rollout design as complementary to the differences-in-discontinuities

design, answering two major concerns with the previous approach. First, one may be concerned

that the treatment statistics we used before—the official provincial data on the share of work

teams adopting the HRS—may themselves be manipulated. By contrast, the gazetteers used by

Almond et al. (2019) are semi-official sources compiled locally, largely for historical purposes.
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Figure 9: Effect of HRS on NDVI and Yields, National County Rollout
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This figure shows the event study of NDVI (left panel) and yield (right) following the treatment of the onset of county
decollectivization, estimated using Equation (6). The bars show 95% confidence intervals.

While still subject to some political reporting pressures, they are viewed by historians as more

likely to be critical of the central government (Looney 2008), and thus are an important check for

the Lin (1992) treatment data.

Second, a central concern with the differences-in-discontinuities design is that the effects at

provincial borders are merely local. Perhaps the effects of land reform on yields were highest at

the centers of provinces, while the periphery were unaffected. Or, as discussed in Section 5.2,

maybe news of the HRS was more likely to spread over province border regions, biasing the

estimated effects towards 0. Measuring county-level outcomes can ease concerns that the borders

of treated areas differ systematically from their “core” regions. Figure A11 shows that counties in

the Almond et al. (2019) data are scattered throughout the border and core regions of provinces.

Moreover, by using averages over a whole county as an outcome, we incorporate information

about both the border and core of the counties.

For county i at time t at year horizon h after treatment, we estimate

yi,t+h − yi,t−1 = β∆Di,t + δh
t + εh

i,t (6)

where yi is either county-level mean NDVI or predicted grain yield, Di,t = 1 in the year when

“collectively owned land was first contracted to individual households in a few villages”, and
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δh
t is a year effect. We cluster standard errors at the county level, allowing for intertemporal

correlation. Following Dube et al. (2023), to prevent negative weighting, for each time period t

we restrict the sample to just-treated units (∆Di,t = 1) and “clean control” (or never-treated) units

(Di,t+h = 0).

Figure 9 plots these county-level results, with annual maximum NDVI (left) and predicted

yields (right) as outcomes. Before treatment, we do not observe evidence of statistically sig-

nificant pre-trends in yields or NDVI, suggesting that we can assume parallel trends between

treated and control counties. Turning to the post-treatment period, we find similar results to the

differences-in-discontinuities design: we cannot reject that the effect of land reform on yields is

different from 0 at the 95% confidence level for all time periods, including looking up to 3 years

after the onset of reform. We can also reject, at the 95% confidence level, that effects are as low

as 0.1 NDVI units. Differences between core and border regions are thus not likely driving our

main results. In other words, the effects of county-level adoption of HRS appear to be similar to

those from province-level discontinuities—small and statistically indistinguishable from 0.

Why does this finding differ so much from Almond et al. (2019), which used the same treat-

ment variation but found that gazetteer grain output per capita increased by 3.8 percent per year

in a county? One possibility is there was a divergence between yield and labor productivity. Only

yield, or land productivity, is visible from space; we cannot directly observe labor inputs. (The

original Almond et al. (2019) data also lacked yearly data on acreage, preventing a calculation of

yield.) If decollectivization increased labor productivity, freeing up labor for other uses, but did

not increase the amount of output over each unit of land, this could reconcile these two findings.

At present, we must remain silent on this possibility.

6 Wrapping Up: Aggregate Effects

6.1 Predicting Aggregate Yields

The natural next question is—did yields increase at all?

Figure 10 plots our best estimate of aggregate rice yield for all provinces in China, using

the main random forest model described in Section 3 to predict province-level NDVI features.11

11This reports the unweighted average across all provinces. We are working on a more sophisticated version that
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Figure 10: Aggregate Yield Growth
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This figure compares, at the Chinese province level, the mean model-predicted rice yields (blue) against the mean
reported yields (red).

Our model predicts that aggregate yields did indeed increase from 1979-84—indeed, our predic-

tions closely match the dynamics of the official yield series at a high frequency. However, the

model predicts that yields stalled throughout the mid-late 1980s, while the reported yield series

continued to increase.

It is important to interpret these aggregate results with some caution. Predicting province-

level yields is a different exercise from predicting grid-cell level yields—particularly with Chi-

nese provinces, which can be as large as European countries. Unlike with predicting responses

to shocks, predictions of secular changes in yields are sensitive to the choice of countries in the

training sample, which determine the domain of the outcome variable it can predict. Nonethe-

less, the majority of models trained on reasonable permutations of the training sample seem to

show a yield increase throughout the 1980s. The model presented here represents our best cur-

rent estimate—one that is best able to match the aggregate variation in Japan and South Korea

(Figure A14), two relatively similar contexts, completely out-of-sample.

weights by aggregate output, which has to be estimated separately.
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6.2 Conclusion

Prima facie, one would expect that a policy change credited with fundamentally transforming Chi-

nese agriculture would be visible with satellites—particularly when other, more minute changes

(like weather shocks) are also visible. Perhaps provinces that adopted it sooner grew faster—or,

if provinces are too large, then at least the early counties. However, we find consistent evidence,

across these different identification strategies, that the causal effect of the Household Respon-

sibility System on grain yields is statistically indistinguishable from 0. The standard errors on

these estimates are precise; we are able to reject even relatively minor changes in agricultural

yield at the 95% confidence level.

We should reiterate what we can precisely say with satellite data. This paper has focused

entirely on grain yields, which are measurable from space. Labor productivity is not. This

paper’s findings are entirely consistent with the HRS increasing labor productivity, freeing up

time for non-agricultural work—indeed, we are investigating these linkage effects, particularly

to rural industry, in other research. Nonetheless, in people-rich, land-poor China, where rice and

wheat were overwhelmingly the main caloric sources, grain yields were a central preoccupation

of leadership—the procurement targets that starved millions to death during the Great Leap

Forward were set in terms of unrealistic grain yields (Liu and Zhou 2022). Finding no evidence

of an effect of the HRS on grain yields is in tension with the academic and popular consensus,

which holds that the HRS was the major driver of agricultural productivity growth from the late

1970s to early 1980s.

If the HRS did not cause yields to grow, what did? The obvious candidate—and the only

major national-level agricultural policy change during the same period—is the 1979 rise in pro-

curement prices, where the state raised the average price for quota grain by 20% and the bonus

for above-quota grain from 30% to 50% (Sicular 1988). Since these price rises did not differ by

province, their effects are not captured in the border discontinuity design. Unfortunately, we are

somewhat limited in what we can formally prove about the procurement price reform—AVHRR

began transmitting images only in late 1978, such that we lack a pre-period for the 1979 price

change. In the appendix, Figure A15 plots the grid-level price shock (based on their underlying

FAO-GAEZ agro-climatic potential yields, multiplied by the price change) against the observed
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yield changes from 1979 to 1980. The correlation is positive, and the coefficient on price shocks

is statistically significant at p = 0.05.

Given the lack of a pre-period, these correlations should be interpreted only as suggestive.

However, prior treatments of China’s rural reform period, from Lin (1992) to Swinnen and Rozelle

(2006), have all considered the procurement price changes a significant contributor to rising agri-

cultural yields, but based on prior panel regression evidence, they have been de-emphasized in

favor of the HRS as the central cause. This paper’s (lack of) causal evidence may shift the balance

between these two explanations. At the microeconomic level, models of collective agriculture

tend to emphasize free rider problems and monitoring costs, which overwhelm any of the pro-

ductivity benefits of larger scale (Lin 1988). However, even under collective agriculture, there

are marginal incentives to produce more, particularly if these prices are brought closer in line

with free-market levels. This paper’s results touch on fundamental questions about what drives

the efficiency differences between capitalist and socialist systems—is it who owns the claims on

output, or is it getting prices right?

These results also interact with our understanding of the history of China’s reform period

at the highest levels of power. Hua Guofeng, Mao’s direct successor, has long been seen as a

dogmatic Maoist opposed to reform, a view best summarized by his “Two Whatevers” slogan—

that he would uphold whatever decisions Mao made, and whatever instructions he gave. In this

light, the Reform and Opening period has commonly been seen as the result of a victory of a

reform coalition led by Deng Xiaoping over a conservative faction led by Hua.

A recent wave of revisionist history, with new access to party archives and close contacts

with former Party leaders, has begun to revise these long-held views of Hua Guofeng, and the

common narrative of Reform and Opening (Teiwes and Sun 2016; Eisenman 2018; Torigian 2022).

Close study of party conference materials by Teiwes and Sun (2016) reveals that there was little

policy daylight between Hua and Deng—if anything, Hua was more involved in rural policy

reforms at an early stage. It was under Hua that the experiment with Special Economic Zones

began (Vogel (2013), p. 185). It was Hua who issued the first, cautious statement of support

of household responsibility by a top leader, when in 1979 he authorized in the special cases of

“isolated households in mountainous and remote areas” (Teiwes and Sun (2016), p. 70). And it

was under Hua that procurement prices were raised in 1979.
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This last point may partly explain the emphasis on the now-famous Household Responsibility

System, which is closely associated with Deng, relative to the less-known procurement price

reform. As early as 1983, Deng’s quotes concerning household responsibility were already being

rewritten for his Selected Works to edit out his caution and make his support seem stronger than

it was at the time (Teiwes and Sun (2016), p. 157). By contrast, during Hua’s self-criticism in fall

1980, as he was gradually being stripped of authority by Deng and his allies, he made a special

point of claiming “sole responsibility” for the price reform of 1979 (Teiwes and Sun (2016), p. 65).

Our conventional narratives of the Household Responsibility System may reflect history being

written by the winners.

On a broader note, satellite imagery from sources like AVHRR present an enormous op-

portunity for historical research. This paper demonstrates how the latest advances in machine

learning can be applied, with relatively low computational cost, to produce agricultural output

data anywhere in the world, from 1978 on. The relatively high level of disaggregation provided

by AVHRR also allows for the application of careful, modern causal identification to historical

questions. In future work, we plan to continue to exploit this novel data source to uncover other

drivers (or, in this case, non-drivers) of China’s economic transformation, such as reforms to

migration policy and the rise of the Township and Village Enterprises (TVEs). This paper’s new

causal evidence, challenging long-held views of one of the major reforms of the Chinese miracle,

suggests that other surprising possibilities may exist in historical satellite imagery, waiting to be

discovered.
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Figure A11: Maps of County Treatment Dates, Almond et al. (2019)
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This map shows when Chinese counties (using 1990 boundaries) adopted the Household Responsibility System
(HRS) using Almond et al. (2019)’s definition: when “collectively owned land was first contracted to individual
households in a few villages”.
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Figure A12: Effect of Provincial HRS Adoption on Yield
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This figure shows the effect of the provincial HRS rollout on variations on the main specification: dropping a 5km
“donut hole” of the closest observations to the border, and changing the threshold of observations to include in the
regression discontinuity by 10km increments.
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Figure A13: Spillovers
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This figure illustrates the pattern of yields we would expect before (left) and after (right) the reform that might cause
a null finding, under the assumption that (1) the true effect is positive and (2) the spillovers decay with distance to
the boundary.

Figure A14: Predicting aggregate rice yields in time series, out-of-sample
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(b) Out-of-sample, Korea
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Figure A14 plots the aggregate predicted log rice yield residual against the reported log rice yield residual for Japan
(left) and South Korea (right). The aggregate rice yield is the unweighted mean of prefecture- and county-level yields,
respectively. Log rice yield residuals are formed by taking the log of the rice yield, and residualizing with respect to
a unit fixed effect.
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Figure A15: Correlation between Price Shocks and Yield Growth
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This figure shows the correlation between yield growth and procurement price shocks at the grid cell level, where
price shocks are defined as Zi,t = ∑c(PotYieldi,c × ∆ ln pc,t).
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Table A4: Literature Estimates of the Effects of the Household Responsibility System

Years Outcome HRS Effect
(pct pts)

HRS con-
tribution

McMillan et al. (1989) 1978-84 Agricultural TFP 78 78%
Lin (1992) 1978-84 Gross value of farm output 46.9 48.7%
Almond et al. (2019) 1974-84 Grain per capita 15.1 80%
Gibson (2020) 1979-84 Grain output 53 177%

This table summarizes the literature’s estimates of the HRS’s effect on agricultural outcomes. The effect for Almond
et al. (2019) is the percentage change between grain per capita observed 4 years after treatment (388.3 kg per capita)
and grain yield at time of treatment (337.2 kg per capita), from their replication data. The overall growth for Almond
et al. (2019) is the unweighted average county-level change in grain per capita from 1978 to 1984. We calculate overall
grain output for Gibson (2020) using the official aggregate grain output increase from 1978-84 (30%).

Table A5: Training Data Sample

Country Years Crops Unit N Source

Japan 1982-2013 Rice Prefecture 950 Ministry of Agriculture,
Forestry and Fisheries

South Korea 1982-2013 Rice County 2265 KOSTAT
India 1982-2005 Rice, wheat District 3647 ICRISAT; harmonized by

Brey and Hertweck (2023)
Pakistan 1990-2013 Wheat District 638 Punjab Crop Reporting Ser-

vice (CRS)

Table A6: Estimation w Clean Controls

Horizon (h years after reform)
-3 -2 -1 0 1 2 3

Main specification 0.002 -0.005 0.000 -0.000 -0.006 -0.012 -0.008
( 0.011) ( 0.005) ( 0.000) (0.005) ( 0.008) (0.007) (0.007)

Dube et al. (2023) Clean Controls 0.002 -0.005 0 -0.000 0.012 . .
( 0.011) ( 0.005) ( 0) ( 0.005) ( 0.005)
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